

adventurelib - easy text adventures

adventurelib provides basic functionality for writing text-based adventure
games, with the aim of making it easy enough for young teenagers to do.

The foundation of adventurelib is the ability to define functions that are
called in response to commands. For example, you could write a function to
be called when the user types commands like “take hat”:

@when('take THING')
def take(thing):
 print(f'You take the {thing}.')
 inventory.append(thing)

Contents:

	Overview
	For teachers

	Non-English speakers

	Installing Adventurelib
	With pip

	Single file

	Introduction
	Starting a project

	Adding a command

	Using long text

	Be creative

	Binding commands
	@when decorator

	Capturing values

	Capturing multi-word names

	Additional parameters to commands

	Calling @when functions yourself

	Command Contexts

	Rooms
	Creating a room

	Storing attributes on rooms

	Directions and exits

	Exits

	Moving between rooms

	Adding more directions

	Items
	Defining an item

	Bags of items

	Characters

	Customisations
	Input Prompt

	Disabling the help command

	Customising the “I don’t understand” message

	Release History
	1.2 - 2018-02-13

	1.1 - 2016-11-20

	1.0 - 2016-10-01

Indices and tables

	Index

	Module Index

	Search Page

Overview

For teachers

Adventurelib was created in response to requests from teachers for more
resources to help teach programming concepts. However, many text-based
adventure game frameworks impose preconceptions about how a text-based
adventure game should work. They often assume items and inventories, rooms and
items, non-player characters (known as NPCs) or more, and producing a game
using these “engines” becomes less a matter of programming and more of
producing the content.

Adventurelib deliberately provides only limited support for rooms, items and so
on, as I believe it is more instructive to learn how to create these structures
oneself.

Programming with adventurelib seems to bring up very different material to
programming graphical games. The challenges are partly in the domain of
computer science - how to model game state and produce business logic - and
partly in the domain of English - such as how to construct grammatical
sentences from fragments.

These topics must be tackled:

	Naming/identity - the difference between an object and a name that may be
used to refer to that object.

	References - how an object may hold references to other objects, or
to itself, and how traversal and manipulation of these references is the
essence of producing game logic.

	Sets - Bags are sets of items, so membership in a set, set intersection,
union and difference, are very useful.

	Parts of speech such as pronouns and articles; pluralisation; sentence case.

	Writing imaginative, engaging content.

I think of these as somewhat more difficult topics than those that come up in
writing graphical games, and I would therefore suggest teaching Pygame Zero [https://pygame-zero.readthedocs.io/]
or some other graphical games library earlier.

If you have feedback to offer having taught with adventurelib, please submit
this using the Github issues page [https://github.com/lordmauve/adventurelib/issues].

Non-English speakers

Adventurelib was written by an English speaker. One might ask, “Can
adventurelib be used in other languages?”

We need to be careful to distinguish between the language of the API, and the
language of the games created using the API. The API will always be English,
and learners should be encouraged to embrace this; for better or worse, the
vast majority of programming languages, APIs, documentation, and global
conferences are in English.

But for writing games in other languages, some conventions employed by
adventurelib will be anglophone. Here are the issues I can think of:

	@when() matches on the basis of words - ie. splits on spaces and matches
word-by-word. This may not work for most ideographic/logographic languages.

	The uppercase/lowercase of @when('take ITEM') will not be usable in
languages without a concept of letter case.

	north, south, east and west are built into the Rooms
system, though it is possible to add your own directions. Strictly, these
are identifiers, and could be used with non-English commands, but the results
of functions like room.exits() would need translation before display
to the user.

	No attention has been paid to RTL languages. For example the
say() function may be broken for RTL languages, and the @when
pattern matching is left-to-right greedy, so therefore appears ungreedy when
considered right-to-left.

Under these limitations, adventurelib would be suitable for most European
languages, but perhaps less suitable for languages from the rest of the world.

I would welcome feedback about using adventurelib in other languages; as always
the correct place for this is the Github issues page [https://github.com/lordmauve/adventurelib/issues].

Installing Adventurelib

With pip

Adventurelib is pip-installable. If you have a working pip, you should be able
to simply type (at a command prompt):

pip install adventurelib

Single file

adventurelib is a single file. If you download the package from PyPI [https://pypi.python.org/pypi/adventurelib] or browse
the project on GitHub [https://github.com/lordmauve/adventurelib], adventurelib.py is all you need. You can save this
file alongside your game script and use it directly.

Introduction

In this section we’ll look at how to get started writing a game with
adventurelib.

Starting a project

The first thing you’ll need to do is import the good stuff from adventurelib:

from adventurelib import *

Then, at the bottom of the file, call the start() function, which begins
the game:

start()

Save the file.

Because we haven’t added any behaviours, this game won’t do very much, but we
should run it at this point as a “sanity check” that everything is installed.
If you’re using IDLE, the game should just run, or you can run it at a command
prompt using the python or python3 binary.

python3 my_game.py

You should be able to get results like the following:

> go north
I don't understand 'go north'.

> help
Here is a list of the commands you can give:
?
help
quit

Pressing Ctrl+D will quit the game, or you can type the built-in quit
command.

Adding a command

All of the rest of your code should go in between the from adventurelib
import * and the start() lines.

We can use the @when syntax to create a command that player
can type in order to interact with your game. Let’s add a brush teeth
command:

@when("brush teeth")
def brush_teeth():
 print("You brush your teeth. They feel clean.")

If you start the game again you can try out the new command:

> brush teeth
You brush your teeth. They feel clean.

Using long text

Writing rich, descriptive text is your main tool for getting a player to feel
immersed in your game.

While Python’s built-in print() function is useful for displaying output
to a user, it is a bit unwieldy when you want to write several lines of text
at once. You could write your descriptions like this, using + to glue
together individual strings:

@when("brush teeth")
def brush_teeth():
 print(
 "You squirt a bit too much toothpaste onto your " +
 "brush and dozily jiggle it round your mouth."
)

This can be inconvenient and harder to make changes to. Adventurelib provides a
convenience function called say() that you can use instead to show longer
strings of text to the player. It’s intended to be used with triple-quoted
strings like this:

@when("brush teeth")
def brush_teeth():
 say("""
 You squirt a bit too much toothpaste onto your
 brush and dozily jiggle it round your mouth.
 """)

This will clean up the spacing of the string, then wrap the output to the width
of the player’s screen.

> brush teeth
You squirt a bit too much toothpaste onto
your brush and dozily jiggle it round
your mouth.

It also supports multiple paragraphs of text, separated by blank lines:

@when("brush teeth")
def brush_teeth():
 say("""
 You squirt a bit too much toothpaste onto your
 brush and dozily jiggle it round your mouth.

 Your teeth feel clean and shiny now, as you
 run your tongue over them.
 """)

> brush teeth
You squirt a bit too much toothpaste onto
your brush and dozily jiggle it round
your mouth.

Your teeth feel clean and shiny now, as
you run your tongue over them.

You do not have to use say() over print():

	print() will preserve the formatting of the strings you give it. This is
sometimes needed; for example, to show a pre-formatted poem, or to display
ASCII art [https://en.wikipedia.org/wiki/ASCII_art].

	Use say() to make it easier to output prose, in a way that will be
easier for the player to read.

Be creative

That’s more or less all there is to it. Now you need to think up a good story
for your game.

Adventurelib can help with:

	Calling your code in response to player commands

	Moving through interconnected locations

	Referring to items and characters by name

…but you’re going to need to use those features to tell a story that players
can interact with and get drawn into. You’re going to have to write the Python
code that enforces the game’s rules and lets you tell that story.

Think about:

	Characters

	Locations

	Emotions

	Detailed descriptions

	Expressive language

	How players will experience your game

Good luck and have fun!

Binding commands

Text adventure games respond to commands entered by the player. Some typical
commands might be:

	north

	take wand

	give wand to wizard

adventurelib lets the programmer write code that will run when a command is
entered. This means you can decide what happens in response to a command. Your
code might decide whether the wizard wants the wand and print what the wizard
says when he gets it.

Note that you also needs to check that the wizard is here and you have the
wand to give to him!

@when decorator

The @when decorator is written on the line above a function. The function
will then be called when a player types a matching command.

This code will be called when the player types “scream”:

@when("scream")
def scream():
 print("You unleash a piercing shriek that reverberates around you.")

Note that this is case-insensitive, so it will also be called when the player
types “SCREAM” or “sCrEAM”:

> scream
You unleash a piercing shriek that reverberates around you.

> SCREAM
You unleash a piercing shriek that reverberates around you.

You can put multiple words into the command. You can also write more than
one @when line, which means the function will be called if any of the
commands match. This can make it easier for the player to work out what to
type:

@when("shout loudly")
@when("shout")
@when("yell")
def yell():
 print("You bellow at the top of your lungs.")

And then in game:

> yell
You bellow at the top of your lungs.

> shout loudly
You bellow at the top of your lungs.

As with the case of what a player types, so too the spacing of what a player
types doesn’t matter:

> shout loudly
You bellow at the top of your lungs.

All the words you want the player to type have to be in lower case letters.

Capturing values

While you could write separate functions for “take wand” and “take hat”, it’s
more normal to write a single function that will be called when the player
types “take anything”.

This code will be called when the player types “take anything”, and the words
that match the anything will be passed into the function so that you can
react to what it was they tried to take:

@when("take THING")
def take(thing):
 print(f"You take the {thing}.")

So, in a game:

> take hat
You take the hat.

> take horse
You take the horse.

> take cheeseburger
You take the cheeseburger.

Of course, this isn’t a very useful function, because it does not check that
there is a thing to take! You will have to write the code that does these
checks.

Here’s another example, where we capture two words:

@when("give ITEM to RECIPIENT")
def give(item, recipient):
 print(f"You give the {item} to the {recipient}.")

Here are the rules for what you can write:

	All the words you want the player to type have to be in lower case letters.

	Words that you write in CAPITAL LETTERS will match any word the player types.

	For each word you write in CAPITAL LETTERS, the function has to take a
parameter with the same name in lowercase letters.

	The function will be called with the names the player typed - but they will
be converted to lower case.

Capturing multi-word names

An UPPERCASE name can match multiple words. If your code contains the above
example:

@when("give ITEM to RECIPIENT")

Then a player can type:

> give poison apple to evil godmother

And your code will receive the values:

item = "poison apple"
recipient = "evil godmother"

As long as you require players to type some command words between ITEM and
RECIPIENT (to in this case), this will do what you expect. But beware
of providing a shorter alias:

@when("give ITEM RECIPIENT")

Adventurelib uses what’s called a greedy algorithm - “greedy”, because the
first group will hungrily “eat” as many words as it can. If a player typed:

> give poison apple evil godmother

Then ITEM will “eat” the first three words, and your code will receive the
values:

item = "poison apple evil"
recipient = "godmother"

Which is probably not what you expect!

However, each CAPITALISED word will match at least one word. So give apple
godmother will do what you expect. Therefore one solution is to make sure
every object in the game can be referred to by a single-word name like
apple. This can work well in simple games, but the drawback is that you
would struggle to create puzzles that involve multiple variations on an object:

> inventory
You have:
a red apple
a blue apple

> feed red apple to water nymph
The nymph sticks out her tongue and shivers unenthusiastically.

> feed blue apple to water nymph
The nymph's eyes widen as you take out the blue apple. She dashes
towards you and snatches it from your hands, and then immediately
turns and runs towards the small door.

Glancing back towards you momentarily, she wordlessly tosses you
a slender, silver-blue key, and a moment later is gone.

It is probably best to require words like to, with and on, so that
adventurelib knows how to split up a phrase:

@when('give ITEM to RECIPIENT')

@when('use ITEM on TARGET')

@when('hit TARGET with WEAPON')

Additional parameters to commands

In some cases, you might like to use a function to handle a number of similar
commands.

You can pass additional keyword arguments to the @when decorator which will
be passed into the handler function whenever that version of the command line
matched.

For example:

@when('shout', action='bellow')
@when('yell', action='holler')
@when('scream', action='shriek')
def shout(action):
 print(f'You {action} loudly.')

Calling @when functions yourself

Even though you’ve written a @when function and it will be called
automatically when the player enters that command, you can still call the
function yourself normally.

For example, if you write a look command, you can call this from other
commands, such as when you enter a room:

@when('look')
def look():
 print(current_room)

@when('go north'):
def go_north():
 global current_room
 current_room = current_room.north
 print('You go north.')
 look()

Command Contexts

In some games, a command might only be available in certain contexts, or might
change its behaviour in some contexts.

The most simple way of checking if a command can be used right now is to
add an if statement:

@when('exit')
def exit_room():
 global current_room
 if current_room.outside:
 current_room = current_room.outside
 else:
 say("Exit what? You're already outside.")

This isn’t always the best way. In some cases there are just too many different
conditions to check, and you would end up writing too many if/else
statements. This can be useful in situations like these:

	If you have levels then certain actions might only be available in one of
the levels.

	If you have a menu - a main menu, or an inventory menu perhaps - then you
might have a different set of commands in that menu.

	If you can “unlock” certain commands as you progress through the game.

The command context system allows you to configure some of your commands
to be available in certain contexts only.

To do this, pass a context= keyword argument to the @when decorator:

@when('cast SPELL', context='wonderland')
def cast(spell):
 say(f"You cast the spell.")

Now this command will be completely hidden in help and in the game:

> cast fireball
I don't understand 'cast fireball'.

This command will only become active when we set the context to match. You can
set and get the context using set_context() and get_context():

	
adventurelib.set_context(new_context)

	Set the current command context to new_context.

Pass None to clear the current context.

	
adventurelib.get_context()

	Get the current command context.

So for example:

@when('enter mirror')
def enter_mirror():
 if get_context() == 'wonderland':
 say('There is no mirror here.')
 else:
 set_context('wonderland')
 say('You step into the silvery surface, which feels wet and cool.')
 say('You realise that clicking your heels will let you return.')

@when('click heels', context='wonderland')
def click_heels(spell):
 set_context(None)
 say('The moment your heels touch the world rearranges around you.')

Now you can transition between the different contexts:o

> enter mirror
You step into the silvery surface, which feels wet and cool.
You realise that clicking your heels will let you return.

> help
enter mirror
cast SPELL
click heels

> enter mirror
There is no mirror here.

> cast fireball
You cast the spell.

> click heels
The moment your heels touch the world rearranges around you.

> cast fireball
I don't understand 'cast fireball'.

> click heels
I don't understand 'click heels'.

Note that any commands specified without passing context= will be available
in all contexts.

You might want to call set_context() before you call start() in order
to set the context that the game will start in.

Tip

Note that if you are not in the right context, the command will not appear
at all. Beware of confusing your users with appearing and disappearing
commands.

Context Hierarchies

Contexts may be nested inside other contexts. To do this, use a . character
to separate different levels of the context hierarchy:

@when('land', context='wonderland.flying')
def land():
 set_context('wonderland')
 say('You gradually drop until you feel the earth beneath your feet.')

When the current context is wonderland.flying, all the wonderland
commands are available as well as wonderland.flying commands and all
commands specified without context=.

When the current context is wonderland, the land command will not be
available:

You dance through the sky like a feather on the wind.

> land
You gradually drop until you feel the earth beneath your feet.

> land
I don't understand 'land'.

The most deeply nested context takes priority. You can use this to pass
different parameters to a command in different contexts, or call a different
function entirely:

@when('north', dir='north')
@when('north', dir='south', context='confused')
def go(dir):
 ...

@when('north', context='confused.really')
def confused_north():
 say('The cauliflowers are in bloom this year.')

Rooms

Many adventure games - but not all - have a concept of “rooms”. A player can
explore rooms with some standard movement commands, perhaps finding interesting
items that they can use or characters they can speak to. Note that despite the
name, a room doesn’t have to be a room of a house. You could use rooms to
describe any concept of location, in order to tell your story:

	Drifting in space

	On top of a hill

	Underneath the floorboards

	Nowhere

Adventurelib provides a helper object called Room, that can be used within
your program. You don’t have to use this object in order to create the
impression of rooms though. You can do it with creative use of @when
functions.

Creating a room

Rooms are created by passing a description. Rich descriptions that convey a
story to the user are very important to make your text adventure immersive,
so try to write at least a couple of sentences.

from adventurelib import *

space = Room("""
You are drifting in space. It feels very cold.

A slate-blue spaceship sits completely silently to your left,
its airlock open and waiting.
""")

spaceship = Room("""
The bridge if the spaceship is shiny and white, with thousands
of small, red, blinking lights.
""")

Next you’ll want the ability to move between rooms. adventurelib doesn’t track
what room the player is in; this is your responsibility!:

current_room will be a global variable. Let's start out in
space, so assign the 'space' room from above.
current_room = space

@when('enter airlock')
def enter_spaceship():
 # To set a global variable from within a function you have
 # to include the 'global' keyword, to avoid creating a
 # local variable instead.
 global current_room

 # Got to check if this action can be done here
 if current_room is not space:
 print('There is no airlock here.')
 return

 current_room = spaceship

 # You should include some narrative for every action to
 # ensure the transition doesn't feel abrupt.
 print(
 "You heave yourself into the airlock and slam your " +
 "hand on the button to close the outer door."
)

 # Show the room description to indicate we have arrived.
 print(current_room)

Storing attributes on rooms

Part of the reason for rooms is to have different objects or contexts for the
story. Some actions could only be possible in some rooms. You can assign
arbitrary attribute names to an object in order to track the state of a room
or what actions can be performed there. You can also set attributes on the
Room object, which apply for all rooms:

Room.can_scream = True # The default for all rooms
space.can_scream = False # Set a value for a specific room.

@when('scream')
def scream():
 if current_room.can_scream:
 print(
 "You unleash a piercing shriek that " +
 "reverberates around you."
)
 else:
 print(
 "You try to yell but there's no sound " +
 "in the vacuum of space."
)

If you access an attribute that doesn’t exist on a room, an AttributeError
will be raised, so ensure that you either set an attribute on every single
room or set a default value on Room.

Directions and exits

Many text adventure games let players explore a system of rooms freely, using
common commands such as north, south, east and west.

Room objects support these compass point directions by default. If you
assign a room as the north attribute of another room, then you can traverse
this relationship.

space.north = spaceship

Then one could access the room to the north of the current room using normal
attribute access:

current_room.north

The key feature of the directions system is that these references are
bi-directional. adventurelib knows that north is the opposite of
south, so these relationships automatically hold:

>>> space.north is spaceship
True
>>> spaceship.south is space
True

Exits

Rooms have a couple of methods that allow you to query what exits they have.

These can be useful when writing commands that use the room layout (such as
moving or looking in a direction).

	
room.exit(direction)

	Get the Room that is linked in direction (eg. north). Returns None
if there is no room in that direction.

	
room.exits()

	Get a list of direction names where a direction is set.

Moving between rooms

To follow the links you’ve defined you could define separate north,
south, east and west handlers - but the code would be mostly the
same, and this is annoying to type and make changes to.

Instead, we can define one function and use several different @when lines
to define the directions we will go. Each one will pass a direction in which
to go.:

@when('north', direction='north')
@when('south', direction='south')
@when('east', direction='east')
@when('west', direction='west')
def go(direction):
 global current_room
 room = current_room.exit(direction)
 if room:
 current_room = room
 print(f'You go {direction}.')
 look()

Then in game:

> north
You go north.
There is a polar bear here.

> south
You go south.
It is a bright, sunny day.

These can be some of the most heavily used command, so you could also provide
alias commands n, s, e and w as a convenience:

@when('north', direction='north')
@when('south', direction='south')
@when('east', direction='east')
@when('west', direction='west')
@when('n', direction='north')
@when('s', direction='south')
@when('e', direction='east')
@when('w', direction='west')
def go(direction):
 ...

Adding more directions

While north, south, east and west are built into adventurelib,
you don’t have to use them. You can also register new directions, so long as
you give an opposite. You would typically do this at the top of the file,
before you define any rooms:

Room.add_direction('up', 'down')
Room.add_direction('enter', 'exit')

tent = Room(...)
camp = Room(...)
river = Room(...)
camp.enter = tent
camp.down = river

Items

Many games will allow players to pick up objects. Also perhaps some actions in
the game will cause players to receive objects, such as when given them by
a character.

To support this, adventurelib provides two classes that work together: Item
and Bag.

Defining an item

The Item class represents an item. The most important feature is that items
can be referred to by a number of names. This means that you can use a
descriptive name for the item in output that you show to the user, but allow
the user to refer to the item by a shorter name. In game, the interaction might
be as follows:

> look
You are in a dirt-stained and litter-strewn alley behind
the cinema.
There is a broken broom here.

> take broom
You take the broom.

> inventory
You have:
a broken broom

To represent an object like this in the game, construct an Item object:

broom = Item('a broken broom', 'broom')

The first name you give is the default name for the item, which can be inserted
into strings:

print(f'You sweep away cobwebs with {broom}.')

All the other names you give are aliases for the object. See Bags of items for
how to select items based on what the player types.

Item Attributes

Items can be assigned arbitrary attributes, which can be used to set properties
that your @when handlers can use for game logic.

Like Room, you can assign class attributes on Item in order
to have a default that applies for all items that aren’t set specifically.

For example:

Item.colour = 'grey'

mug = Item('mug')
mug.colour = 'red'

@when('look at ITEM')
def look(item):
 obj = inventory.find(item)
 if not item:
 print(f"You do not have a {item}.")
 else:
 print(f"It's a sort of {obj.colour}-ish colour.")

Definite/indefinite articles

In English, we refer to objects using indefinite articles “a”, “an” and “some”
when we’re talking about some object out of a class of objects, and “the”
when we’re talking about a specific one or specific group.

If you’re not writing in English, you may have similar grammatical
considerations - genders, word endings etc.

You can store these variations on the name as attributes on the item for use in
constructing grammatical sentences - here we use def_name, but use whatever
attributes you like:

apples = Item('some apples', 'apples', 'apple')
apples.def_name = 'the apples'

@when('take ITEM')
def take_item(item):
 obj = current_room.items.take(item)
 if not obj:
 print(f'There is no {item} here.')
 else:
 print(f'You take {item.def_name}.')
 inventory.add(obj)

Making your sentences obey correct grammar in all case may not be easy - good
luck!

Bags of items

A Bag is a collection of items. This does not need to be a literal “bag”
that the player is holding - it’s a metaphor! You could treat a Room as being
bag of items. Or a group of Characters could be held in a Bag.

The point of a Bag is to allow you to look up items by the names that players
have typed for them. For this purpose, they have these methods:

	
class Bag([items])

	Construct a bag from a list of items.

	
name in bag

	Test if the name the player entered is an object in the bag.

	
bag.find(name)

	Return the item corresponding to a name the player typed, but don’t remove
it from the bag.

Returns None if the name didn’t match any object in the bag.

	
bag.take(name)

	Like find(), find the item corresponding to the name the player typed,
but then remove it from the bag and return it.

Returns None if the name didn’t match any object in the bag.

	
bag.get_random()

	Select and return one item from the bag at random, without removing it.

	
bag.take_random()

	Remove and return one item from the bag at random.

But Bags are also sets [https://docs.python.org/3/tutorial/datastructures.html#sets] so they inherit various methods for modifying and
iterating over items in the Bag, most usefully:

	
bag.add(item)

	Put item into the bag if it isn’t already in it.

	
for item in bag

	Loop over the items in the bag.

So, you could model the player’s inventory as a Bag:

inventory = Bag()

@when('eat ITEM')
def eat(item):
 obj = inventory.take(item)
 if not obj:
 print(f'You do not have a {item}.')
 else:
 print(f'You eat the {obj}.')

@when('inventory')
def show_inventory():
 print('You have:')
 if not inventory:
 print('nothing')
 return
 for item in inventory:
 print(f'* {item}')

You could also model the items on the ground in a room as a bag:

chapel.items = Bag([
 Item('a golden candlestick', 'candlestick'),
])

@when('take ITEM')
def take(item):
 obj = current_room.items.take(item)
 if not obj:
 print(f'There is no {item} here.')
 else:
 inventory.add(obj)
 print(f'You take the {obj}.')

Characters

You can treat non-player characters as items also.

You might want to store pronouns for the characters as attributes on the Item
object for use in constructing grammatical sentences:

wizard = Item('a wizard')
wizard.def_name = 'the wizard'
wizard.subject_pronoun = 'he'
wizard.object_pronoun = 'him'

To avoid repeating this for all male and all female characters, consider
creating a small subclass (of course, you could do this for any other group
of Items that share common attributes):

class MaleCharacter(Item):
 subject_pronoun = 'he'
 object_pronoun = 'him'

Then the above example can be written just as:

wizard = MaleCharacter('a wizard')
wizard.def_name = 'the wizard'

Customisations

Of course, your game will have a unique story, but you can also change
adventurelib’s behaviour to suit your game.

Below we will discuss some of the possible customisations and why you might
want to use them in a game.

Input Prompt

Some games display status information in the prompt, such as health. For
example:

10HP > attack grue
You flail wildly at the grue, but it neatly side-steps you and
kicks you in the ribs, for 1HP damage.

9HP >

‘HP’ is an abbreviation for ‘health points’ that comes from classic computer
games. But you could use a Unicode heart symbol for this!

Alternatively, you might want to display some status at intervals in the game,
unrelated to the actions a player has taken, such as the footsteps in this
example:

> north
You enter a long, rocky passage dimly lit with flickering torches.
The corridor curves to the east.

You hear footsteps to the east.

> east
There's a small nook here. Sitting on a plinth is a crude idol of
a beat with horns.

You hear footsteps to the north.
>

To customise the prompt, write a function that returns what the prompt string
should be. Usually it should end with a space. Then assign this function as
adventurelib.prompt like this:

import adventurelib # Put this at the top of the file

def prompt():
 return '{hp}HP > '.format(hp=player_hp)

adventurelib.prompt = prompt

Disabling the help command

In some games, forcing the player to work out what to type is half the fun.

To make this kind of game work, it’s important to respond to things that the
player types with custom responses, so be prepared to write a lot of @when
functions that respond to many varieties of input.

However, the built-in help/? commands would spoil this kind of game by
giving all the answers.

You can disable the help by setting help=False when calling start():

start(help=False)

Customising the “I don’t understand” message

When the player types a command that doesn’t match any existing @when
function, adventurelib responds with a basic “I don’t understand” message:

> jump up and down
I don't understand 'jump up and down'.

This could get very boring if users see it a lot!

To customise this, write a function and assign it as
adventurelib.no_command_matches. This function should accept the input the
player typed as its argument, and print any responses:

import adventurelib # Put this at the top of the file

def no_command_matches(command):
 print(random.choice([
 'Huh?',
 'Sorry?',
 'I beg your pardon?'
]))

adventurelib.no_command_matches = no_command_matches

Release History

1.2 - 2018-02-13

	New: Commands can be configured to be active only in certain contexts.

	Fix: say() function does not dedent before wrapping text.

1.1 - 2016-11-20

	New: say() function that eliminates formatting problems in printing
multi-line prose.

	New: get_random() and take_random() functions to allow
randomly selecting items from a Bag.

	Fix: a bug where @when statements match even if extra words are given.

	Fix: Bag find/get methods were not properly case-insensitive.

1.0 - 2016-10-01

Initial public release.

Index

 A
 | B
 | R

A

 	
 	adventurelib.get_context() (built-in function)

 	
 	adventurelib.set_context() (built-in function)

B

 	
 	Bag (built-in class)

 	bag.add() (built-in function)

 	bag.find() (built-in function)

 	
 	bag.get_random() (built-in function)

 	bag.take() (built-in function)

 	bag.take_random() (built-in function)

R

 	
 	room.exit() (built-in function)

 	
 	room.exits() (built-in function)

 _static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/file.png

_static/minus.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 adventurelib - easy text adventures

 		
 Overview

 		
 For teachers

 		
 Non-English speakers

 		
 Installing Adventurelib

 		
 With pip

 		
 Single file

 		
 Introduction

 		
 Starting a project

 		
 Adding a command

 		
 Using long text

 		
 Be creative

 		
 Binding commands

 		
 @when decorator

 		
 Capturing values

 		
 Capturing multi-word names

 		
 Additional parameters to commands

 		
 Calling @when functions yourself

 		
 Command Contexts

 		
 Context Hierarchies

 		
 Rooms

 		
 Creating a room

 		
 Storing attributes on rooms

 		
 Directions and exits

 		
 Exits

 		
 Moving between rooms

 		
 Adding more directions

 		
 Items

 		
 Defining an item

 		
 Item Attributes

 		
 Definite/indefinite articles

 		
 Bags of items

 		
 Characters

 		
 Customisations

 		
 Input Prompt

 		
 Disabling the help command

 		
 Customising the “I don’t understand” message

 		
 Release History

 		
 1.2 - 2018-02-13

 		
 1.1 - 2016-11-20

 		
 1.0 - 2016-10-01

_static/up.png

_static/up-pressed.png

