
adventurelib Documentation
Release 1.1

Daniel Pope

Feb 14, 2018

Contents

1 Overview 3
1.1 For teachers . 3
1.2 Non-English speakers . 4

2 Installing Adventurelib 5
2.1 With pip . 5
2.2 Single file . 5

3 Introduction 7
3.1 Starting a project . 7
3.2 Adding a command . 8
3.3 Using long text . 8
3.4 Be creative . 9

4 Binding commands 11
4.1 @when decorator . 11
4.2 Capturing values . 12
4.3 Capturing multi-word names . 13
4.4 Additional parameters to commands . 14
4.5 Calling @when functions yourself . 14
4.6 Command Contexts . 14

5 Rooms 19
5.1 Creating a room . 19
5.2 Storing attributes on rooms . 20
5.3 Directions and exits . 21
5.4 Exits . 21
5.5 Moving between rooms . 21
5.6 Adding more directions . 22

6 Items 23
6.1 Defining an item . 23
6.2 Bags of items . 24
6.3 Characters . 26

7 Customisations 27
7.1 Input Prompt . 27

i

7.2 Disabling the help command . 28
7.3 Customising the “I don’t understand” message . 28

8 Release History 29
8.1 1.2 - 2018-02-13 . 29
8.2 1.1 - 2016-11-20 . 29
8.3 1.0 - 2016-10-01 . 29

9 Indices and tables 31

ii

adventurelib Documentation, Release 1.1

adventurelib provides basic functionality for writing text-based adventure games, with the aim of making it easy
enough for young teenagers to do.

The foundation of adventurelib is the ability to define functions that are called in response to commands. For example,
you could write a function to be called when the user types commands like “take hat”:

@when('take THING')
def take(thing):

print(f'You take the {thing}.')
inventory.append(thing)

Contents:

Contents 1

adventurelib Documentation, Release 1.1

2 Contents

CHAPTER 1

Overview

1.1 For teachers

Adventurelib was created in response to requests from teachers for more resources to help teach programming con-
cepts. However, many text-based adventure game frameworks impose preconceptions about how a text-based adven-
ture game should work. They often assume items and inventories, rooms and items, non-player characters (known
as NPCs) or more, and producing a game using these “engines” becomes less a matter of programming and more of
producing the content.

Adventurelib deliberately provides only limited support for rooms, items and so on, as I believe it is more instructive
to learn how to create these structures oneself.

Programming with adventurelib seems to bring up very different material to programming graphical games. The
challenges are partly in the domain of computer science - how to model game state and produce business logic - and
partly in the domain of English - such as how to construct grammatical sentences from fragments.

These topics must be tackled:

• Naming/identity - the difference between an object and a name that may be used to refer to that object.

• References - how an object may hold references to other objects, or to itself, and how traversal and manipulation
of these references is the essence of producing game logic.

• Sets - Bags are sets of items, so membership in a set, set intersection, union and difference, are very useful.

• Parts of speech such as pronouns and articles; pluralisation; sentence case.

• Writing imaginative, engaging content.

I think of these as somewhat more difficult topics than those that come up in writing graphical games, and I would
therefore suggest teaching Pygame Zero or some other graphical games library earlier.

If you have feedback to offer having taught with adventurelib, please submit this using the Github issues page.

3

https://pygame-zero.readthedocs.io/
https://github.com/lordmauve/adventurelib/issues

adventurelib Documentation, Release 1.1

1.2 Non-English speakers

Adventurelib was written by an English speaker. One might ask, “Can adventurelib be used in other languages?”

We need to be careful to distinguish between the language of the API, and the language of the games created using the
API. The API will always be English, and learners should be encouraged to embrace this; for better or worse, the vast
majority of programming languages, APIs, documentation, and global conferences are in English.

But for writing games in other languages, some conventions employed by adventurelib will be anglophone. Here are
the issues I can think of:

• @when() matches on the basis of words - ie. splits on spaces and matches word-by-word. This may not work
for most ideographic/logographic languages.

• The uppercase/lowercase of @when('take ITEM') will not be usable in languages without a concept of
letter case.

• north, south, east and west are built into the Rooms system, though it is possible to add your own
directions. Strictly, these are identifiers, and could be used with non-English commands, but the results of
functions like room.exits() would need translation before display to the user.

• No attention has been paid to RTL languages. For example the say() function may be broken for RTL languages,
and the @when pattern matching is left-to-right greedy, so therefore appears ungreedy when considered right-
to-left.

Under these limitations, adventurelib would be suitable for most European languages, but perhaps less suitable for
languages from the rest of the world.

I would welcome feedback about using adventurelib in other languages; as always the correct place for this is the
Github issues page.

4 Chapter 1. Overview

https://github.com/lordmauve/adventurelib/issues
https://github.com/lordmauve/adventurelib/issues

CHAPTER 2

Installing Adventurelib

2.1 With pip

Adventurelib is pip-installable. If you have a working pip, you should be able to simply type (at a command prompt):

pip install adventurelib

2.2 Single file

adventurelib is a single file. If you download the package from PyPI or browse the project on GitHub,
adventurelib.py is all you need. You can save this file alongside your game script and use it directly.

5

https://pypi.python.org/pypi/adventurelib
https://github.com/lordmauve/adventurelib

adventurelib Documentation, Release 1.1

6 Chapter 2. Installing Adventurelib

CHAPTER 3

Introduction

In this section we’ll look at how to get started writing a game with adventurelib.

3.1 Starting a project

The first thing you’ll need to do is import the good stuff from adventurelib:

from adventurelib import *

Then, at the bottom of the file, call the start() function, which begins the game:

start()

Save the file.

Because we haven’t added any behaviours, this game won’t do very much, but we should run it at this point as a “sanity
check” that everything is installed. If you’re using IDLE, the game should just run, or you can run it at a command
prompt using the python or python3 binary.

python3 my_game.py

You should be able to get results like the following:

> go north
I don't understand 'go north'.

> help
Here is a list of the commands you can give:
?
help
quit

Pressing Ctrl+D will quit the game, or you can type the built-in quit command.

7

adventurelib Documentation, Release 1.1

3.2 Adding a command

All of the rest of your code should go in between the from adventurelib import * and the start() lines.

We can use the @when syntax to create a command that player can type in order to interact with your game. Let’s add
a brush teeth command:

@when("brush teeth")
def brush_teeth():

print("You brush your teeth. They feel clean.")

If you start the game again you can try out the new command:

> brush teeth
You brush your teeth. They feel clean.

3.3 Using long text

Writing rich, descriptive text is your main tool for getting a player to feel immersed in your game.

While Python’s built-in print() function is useful for displaying output to a user, it is a bit unwieldy when you want
to write several lines of text at once. You could write your descriptions like this, using + to glue together individual
strings:

@when("brush teeth")
def brush_teeth():

print(
"You squirt a bit too much toothpaste onto your " +
"brush and dozily jiggle it round your mouth."

)

This can be inconvenient and harder to make changes to. Adventurelib provides a convenience function called say()
that you can use instead to show longer strings of text to the player. It’s intended to be used with triple-quoted strings
like this:

@when("brush teeth")
def brush_teeth():

say("""
You squirt a bit too much toothpaste onto your
brush and dozily jiggle it round your mouth.

""")

This will clean up the spacing of the string, then wrap the output to the width of the player’s screen.

> brush teeth
You squirt a bit too much toothpaste onto
your brush and dozily jiggle it round
your mouth.

It also supports multiple paragraphs of text, separated by blank lines:

@when("brush teeth")
def brush_teeth():

say("""
You squirt a bit too much toothpaste onto your

8 Chapter 3. Introduction

adventurelib Documentation, Release 1.1

brush and dozily jiggle it round your mouth.

Your teeth feel clean and shiny now, as you
run your tongue over them.

""")

> brush teeth
You squirt a bit too much toothpaste onto
your brush and dozily jiggle it round
your mouth.

Your teeth feel clean and shiny now, as
you run your tongue over them.

You do not have to use say() over print():

• print() will preserve the formatting of the strings you give it. This is sometimes needed; for example, to
show a pre-formatted poem, or to display ASCII art.

• Use say() to make it easier to output prose, in a way that will be easier for the player to read.

3.4 Be creative

That’s more or less all there is to it. Now you need to think up a good story for your game.

Adventurelib can help with:

• Calling your code in response to player commands

• Moving through interconnected locations

• Referring to items and characters by name

. . . but you’re going to need to use those features to tell a story that players can interact with and get drawn into. You’re
going to have to write the Python code that enforces the game’s rules and lets you tell that story.

Think about:

• Characters

• Locations

• Emotions

• Detailed descriptions

• Expressive language

• How players will experience your game

Good luck and have fun!

3.4. Be creative 9

https://en.wikipedia.org/wiki/ASCII_art

adventurelib Documentation, Release 1.1

10 Chapter 3. Introduction

CHAPTER 4

Binding commands

Text adventure games respond to commands entered by the player. Some typical commands might be:

• north

• take wand

• give wand to wizard

adventurelib lets the programmer write code that will run when a command is entered. This means you can decide
what happens in response to a command. Your code might decide whether the wizard wants the wand and print what
the wizard says when he gets it.

Note that you also needs to check that the wizard is here and you have the wand to give to him!

4.1 @when decorator

The @when decorator is written on the line above a function. The function will then be called when a player types a
matching command.

This code will be called when the player types “scream”:

@when("scream")
def scream():

print("You unleash a piercing shriek that reverberates around you.")

Note that this is case-insensitive, so it will also be called when the player types “SCREAM” or “sCrEAM”:

> scream
You unleash a piercing shriek that reverberates around you.

> SCREAM
You unleash a piercing shriek that reverberates around you.

You can put multiple words into the command. You can also write more than one @when line, which means the
function will be called if any of the commands match. This can make it easier for the player to work out what to type:

11

adventurelib Documentation, Release 1.1

@when("shout loudly")
@when("shout")
@when("yell")
def yell():

print("You bellow at the top of your lungs.")

And then in game:

> yell
You bellow at the top of your lungs.

> shout loudly
You bellow at the top of your lungs.

As with the case of what a player types, so too the spacing of what a player types doesn’t matter:

> shout loudly
You bellow at the top of your lungs.

All the words you want the player to type have to be in lower case letters.

4.2 Capturing values

While you could write separate functions for “take wand” and “take hat”, it’s more normal to write a single function
that will be called when the player types “take anything”.

This code will be called when the player types “take anything”, and the words that match the anything will be passed
into the function so that you can react to what it was they tried to take:

@when("take THING")
def take(thing):

print(f"You take the {thing}.")

So, in a game:

> take hat
You take the hat.

> take horse
You take the horse.

> take cheeseburger
You take the cheeseburger.

Of course, this isn’t a very useful function, because it does not check that there is a thing to take! You will have to
write the code that does these checks.

Here’s another example, where we capture two words:

@when("give ITEM to RECIPIENT")
def give(item, recipient):

print(f"You give the {item} to the {recipient}.")

Here are the rules for what you can write:

• All the words you want the player to type have to be in lower case letters.

12 Chapter 4. Binding commands

adventurelib Documentation, Release 1.1

• Words that you write in CAPITAL LETTERS will match any word the player types.

• For each word you write in CAPITAL LETTERS, the function has to take a parameter with the same name in
lowercase letters.

• The function will be called with the names the player typed - but they will be converted to lower case.

4.3 Capturing multi-word names

An UPPERCASE name can match multiple words. If your code contains the above example:

@when("give ITEM to RECIPIENT")

Then a player can type:

> give poison apple to evil godmother

And your code will receive the values:

item = "poison apple"
recipient = "evil godmother"

As long as you require players to type some command words between ITEM and RECIPIENT (to in this case), this
will do what you expect. But beware of providing a shorter alias:

@when("give ITEM RECIPIENT")

Adventurelib uses what’s called a greedy algorithm - “greedy”, because the first group will hungrily “eat” as many
words as it can. If a player typed:

> give poison apple evil godmother

Then ITEM will “eat” the first three words, and your code will receive the values:

item = "poison apple evil"
recipient = "godmother"

Which is probably not what you expect!

However, each CAPITALISED word will match at least one word. So give apple godmother will do what you
expect. Therefore one solution is to make sure every object in the game can be referred to by a single-word name
like apple. This can work well in simple games, but the drawback is that you would struggle to create puzzles that
involve multiple variations on an object:

> inventory
You have:
a red apple
a blue apple

> feed red apple to water nymph
The nymph sticks out her tongue and shivers unenthusiastically.

> feed blue apple to water nymph
The nymph's eyes widen as you take out the blue apple. She dashes
towards you and snatches it from your hands, and then immediately
turns and runs towards the small door.

4.3. Capturing multi-word names 13

adventurelib Documentation, Release 1.1

Glancing back towards you momentarily, she wordlessly tosses you
a slender, silver-blue key, and a moment later is gone.

It is probably best to require words like to, with and on, so that adventurelib knows how to split up a phrase:

@when('give ITEM to RECIPIENT')

@when('use ITEM on TARGET')

@when('hit TARGET with WEAPON')

4.4 Additional parameters to commands

In some cases, you might like to use a function to handle a number of similar commands.

You can pass additional keyword arguments to the @when decorator which will be passed into the handler function
whenever that version of the command line matched.

For example:

@when('shout', action='bellow')
@when('yell', action='holler')
@when('scream', action='shriek')
def shout(action):

print(f'You {action} loudly.')

4.5 Calling @when functions yourself

Even though you’ve written a @when function and it will be called automatically when the player enters that command,
you can still call the function yourself normally.

For example, if you write a look command, you can call this from other commands, such as when you enter a room:

@when('look')
def look():

print(current_room)

@when('go north'):
def go_north():

global current_room
current_room = current_room.north
print('You go north.')
look()

4.6 Command Contexts

In some games, a command might only be available in certain contexts, or might change its behaviour in some contexts.

The most simple way of checking if a command can be used right now is to add an if statement:

14 Chapter 4. Binding commands

adventurelib Documentation, Release 1.1

@when('exit')
def exit_room():

global current_room
if current_room.outside:

current_room = current_room.outside
else:

say("Exit what? You're already outside.")

This isn’t always the best way. In some cases there are just too many different conditions to check, and you would end
up writing too many if/else statements. This can be useful in situations like these:

• If you have levels then certain actions might only be available in one of the levels.

• If you have a menu - a main menu, or an inventory menu perhaps - then you might have a different set of
commands in that menu.

• If you can “unlock” certain commands as you progress through the game.

The command context system allows you to configure some of your commands to be available in certain contexts
only.

To do this, pass a context= keyword argument to the @when decorator:

@when('cast SPELL', context='wonderland')
def cast(spell):

say(f"You cast the spell.")

Now this command will be completely hidden in help and in the game:

> cast fireball
I don't understand 'cast fireball'.

This command will only become active when we set the context to match. You can set and get the context using
set_context() and get_context():

adventurelib.set_context(new_context)
Set the current command context to new_context.

Pass None to clear the current context.

adventurelib.get_context()
Get the current command context.

So for example:

@when('enter mirror')
def enter_mirror():

if get_context() == 'wonderland':
say('There is no mirror here.')

else:
set_context('wonderland')
say('You step into the silvery surface, which feels wet and cool.')
say('You realise that clicking your heels will let you return.')

@when('click heels', context='wonderland')
def click_heels(spell):

set_context(None)
say('The moment your heels touch the world rearranges around you.')

4.6. Command Contexts 15

adventurelib Documentation, Release 1.1

Now you can transition between the different contexts:o

> enter mirror
You step into the silvery surface, which feels wet and cool.
You realise that clicking your heels will let you return.

> help
enter mirror
cast SPELL
click heels

> enter mirror
There is no mirror here.

> cast fireball
You cast the spell.

> click heels
The moment your heels touch the world rearranges around you.

> cast fireball
I don't understand 'cast fireball'.

> click heels
I don't understand 'click heels'.

Note that any commands specified without passing context= will be available in all contexts.

You might want to call set_context() before you call start() in order to set the context that the game will
start in.

Tip: Note that if you are not in the right context, the command will not appear at all. Beware of confusing your users
with appearing and disappearing commands.

4.6.1 Context Hierarchies

Contexts may be nested inside other contexts. To do this, use a . character to separate different levels of the context
hierarchy:

@when('land', context='wonderland.flying')
def land():

set_context('wonderland')
say('You gradually drop until you feel the earth beneath your feet.')

When the current context is wonderland.flying, all the wonderland commands are available as well as
wonderland.flying commands and all commands specified without context=.

When the current context is wonderland, the land command will not be available:

You dance through the sky like a feather on the wind.

> land
You gradually drop until you feel the earth beneath your feet.

> land
I don't understand 'land'.

16 Chapter 4. Binding commands

adventurelib Documentation, Release 1.1

The most deeply nested context takes priority. You can use this to pass different parameters to a command in different
contexts, or call a different function entirely:

@when('north', dir='north')
@when('north', dir='south', context='confused')
def go(dir):

...

@when('north', context='confused.really')
def confused_north():

say('The cauliflowers are in bloom this year.')

4.6. Command Contexts 17

adventurelib Documentation, Release 1.1

18 Chapter 4. Binding commands

CHAPTER 5

Rooms

Many adventure games - but not all - have a concept of “rooms”. A player can explore rooms with some standard
movement commands, perhaps finding interesting items that they can use or characters they can speak to. Note that
despite the name, a room doesn’t have to be a room of a house. You could use rooms to describe any concept of
location, in order to tell your story:

• Drifting in space

• On top of a hill

• Underneath the floorboards

• Nowhere

Adventurelib provides a helper object called Room, that can be used within your program. You don’t have to use this
object in order to create the impression of rooms though. You can do it with creative use of @when functions.

5.1 Creating a room

Rooms are created by passing a description. Rich descriptions that convey a story to the user are very important to
make your text adventure immersive, so try to write at least a couple of sentences.

from adventurelib import *

space = Room("""
You are drifting in space. It feels very cold.

A slate-blue spaceship sits completely silently to your left,
its airlock open and waiting.
""")

spaceship = Room("""
The bridge if the spaceship is shiny and white, with thousands
of small, red, blinking lights.
""")

19

adventurelib Documentation, Release 1.1

Next you’ll want the ability to move between rooms. adventurelib doesn’t track what room the player is in; this is your
responsibility!:

current_room will be a global variable. Let's start out in
space, so assign the 'space' room from above.
current_room = space

@when('enter airlock')
def enter_spaceship():

To set a global variable from within a function you have
to include the 'global' keyword, to avoid creating a
local variable instead.
global current_room

Got to check if this action can be done here
if current_room is not space:

print('There is no airlock here.')
return

current_room = spaceship

You should include some narrative for every action to
ensure the transition doesn't feel abrupt.
print(

"You heave yourself into the airlock and slam your " +
"hand on the button to close the outer door."

)

Show the room description to indicate we have arrived.
print(current_room)

5.2 Storing attributes on rooms

Part of the reason for rooms is to have different objects or contexts for the story. Some actions could only be possible
in some rooms. You can assign arbitrary attribute names to an object in order to track the state of a room or what
actions can be performed there. You can also set attributes on the Room object, which apply for all rooms:

Room.can_scream = True # The default for all rooms
space.can_scream = False # Set a value for a specific room.

@when('scream')
def scream():

if current_room.can_scream:
print(

"You unleash a piercing shriek that " +
"reverberates around you."

)
else:

print(
"You try to yell but there's no sound " +
"in the vacuum of space."

)

If you access an attribute that doesn’t exist on a room, an AttributeError will be raised, so ensure that you either
set an attribute on every single room or set a default value on Room.

20 Chapter 5. Rooms

adventurelib Documentation, Release 1.1

5.3 Directions and exits

Many text adventure games let players explore a system of rooms freely, using common commands such as north,
south, east and west.

Room objects support these compass point directions by default. If you assign a room as the north attribute of
another room, then you can traverse this relationship.

space.north = spaceship

Then one could access the room to the north of the current room using normal attribute access:

current_room.north

The key feature of the directions system is that these references are bi-directional. adventurelib knows that north is
the opposite of south, so these relationships automatically hold:

>>> space.north is spaceship
True
>>> spaceship.south is space
True

5.4 Exits

Rooms have a couple of methods that allow you to query what exits they have.

These can be useful when writing commands that use the room layout (such as moving or looking in a direction).

room.exit(direction)
Get the Room that is linked in direction (eg. north). Returns None if there is no room in that direction.

room.exits()
Get a list of direction names where a direction is set.

5.5 Moving between rooms

To follow the links you’ve defined you could define separate north, south, east and west handlers - but the code
would be mostly the same, and this is annoying to type and make changes to.

Instead, we can define one function and use several different @when lines to define the directions we will go. Each
one will pass a direction in which to go.:

@when('north', direction='north')
@when('south', direction='south')
@when('east', direction='east')
@when('west', direction='west')
def go(direction):

global current_room
room = current_room.exit(direction)
if room:

current_room = room
print(f'You go {direction}.')
look()

5.3. Directions and exits 21

adventurelib Documentation, Release 1.1

Then in game:

> north
You go north.
There is a polar bear here.

> south
You go south.
It is a bright, sunny day.

These can be some of the most heavily used command, so you could also provide alias commands n, s, e and w as a
convenience:

@when('north', direction='north')
@when('south', direction='south')
@when('east', direction='east')
@when('west', direction='west')
@when('n', direction='north')
@when('s', direction='south')
@when('e', direction='east')
@when('w', direction='west')
def go(direction):

...

5.6 Adding more directions

While north, south, east and west are built into adventurelib, you don’t have to use them. You can also register
new directions, so long as you give an opposite. You would typically do this at the top of the file, before you define
any rooms:

Room.add_direction('up', 'down')
Room.add_direction('enter', 'exit')

tent = Room(...)
camp = Room(...)
river = Room(...)
camp.enter = tent
camp.down = river

22 Chapter 5. Rooms

CHAPTER 6

Items

Many games will allow players to pick up objects. Also perhaps some actions in the game will cause players to receive
objects, such as when given them by a character.

To support this, adventurelib provides two classes that work together: Item and Bag.

6.1 Defining an item

The Item class represents an item. The most important feature is that items can be referred to by a number of names.
This means that you can use a descriptive name for the item in output that you show to the user, but allow the user to
refer to the item by a shorter name. In game, the interaction might be as follows:

> look
You are in a dirt-stained and litter-strewn alley behind
the cinema.
There is a broken broom here.

> take broom
You take the broom.

> inventory
You have:
a broken broom

To represent an object like this in the game, construct an Item object:

broom = Item('a broken broom', 'broom')

The first name you give is the default name for the item, which can be inserted into strings:

print(f'You sweep away cobwebs with {broom}.')

All the other names you give are aliases for the object. See Bags of items for how to select items based on what the
player types.

23

adventurelib Documentation, Release 1.1

6.1.1 Item Attributes

Items can be assigned arbitrary attributes, which can be used to set properties that your @when handlers can use for
game logic.

Like Room, you can assign class attributes on Item in order to have a default that applies for all items that aren’t set
specifically.

For example:

Item.colour = 'grey'

mug = Item('mug')
mug.colour = 'red'

@when('look at ITEM')
def look(item):

obj = inventory.find(item)
if not item:

print(f"You do not have a {item}.")
else:

print(f"It's a sort of {obj.colour}-ish colour.")

6.1.2 Definite/indefinite articles

In English, we refer to objects using indefinite articles “a”, “an” and “some” when we’re talking about some object
out of a class of objects, and “the” when we’re talking about a specific one or specific group.

If you’re not writing in English, you may have similar grammatical considerations - genders, word endings etc.

You can store these variations on the name as attributes on the item for use in constructing grammatical sentences -
here we use def_name, but use whatever attributes you like:

apples = Item('some apples', 'apples', 'apple')
apples.def_name = 'the apples'

@when('take ITEM')
def take_item(item):

obj = current_room.items.take(item)
if not obj:

print(f'There is no {item} here.')
else:

print(f'You take {item.def_name}.')
inventory.add(obj)

Making your sentences obey correct grammar in all case may not be easy - good luck!

6.2 Bags of items

A Bag is a collection of items. This does not need to be a literal “bag” that the player is holding - it’s a metaphor! You
could treat a Room as being bag of items. Or a group of Characters could be held in a Bag.

The point of a Bag is to allow you to look up items by the names that players have typed for them. For this purpose,
they have these methods:

24 Chapter 6. Items

adventurelib Documentation, Release 1.1

class Bag([items])
Construct a bag from a list of items.

name in bag
Test if the name the player entered is an object in the bag.

bag.find(name)
Return the item corresponding to a name the player typed, but don’t remove it from the bag.

Returns None if the name didn’t match any object in the bag.

bag.take(name)
Like find(), find the item corresponding to the name the player typed, but then remove it from the bag and
return it.

Returns None if the name didn’t match any object in the bag.

bag.get_random()
Select and return one item from the bag at random, without removing it.

bag.take_random()
Remove and return one item from the bag at random.

But Bags are also sets so they inherit various methods for modifying and iterating over items in the Bag, most usefully:

bag.add(item)
Put item into the bag if it isn’t already in it.

for item in bag
Loop over the items in the bag.

So, you could model the player’s inventory as a Bag:

inventory = Bag()

@when('eat ITEM')
def eat(item):

obj = inventory.take(item)
if not obj:

print(f'You do not have a {item}.')
else:

print(f'You eat the {obj}.')

@when('inventory')
def show_inventory():

print('You have:')
if not inventory:

print('nothing')
return

for item in inventory:
print(f'* {item}')

You could also model the items on the ground in a room as a bag:

chapel.items = Bag([
Item('a golden candlestick', 'candlestick'),

])

@when('take ITEM')
def take(item):

obj = current_room.items.take(item)

6.2. Bags of items 25

https://docs.python.org/3/tutorial/datastructures.html#sets

adventurelib Documentation, Release 1.1

if not obj:
print(f'There is no {item} here.')

else:
inventory.add(obj)
print(f'You take the {obj}.')

6.3 Characters

You can treat non-player characters as items also.

You might want to store pronouns for the characters as attributes on the Item object for use in constructing grammatical
sentences:

wizard = Item('a wizard')
wizard.def_name = 'the wizard'
wizard.subject_pronoun = 'he'
wizard.object_pronoun = 'him'

To avoid repeating this for all male and all female characters, consider creating a small subclass (of course, you could
do this for any other group of Items that share common attributes):

class MaleCharacter(Item):
subject_pronoun = 'he'
object_pronoun = 'him'

Then the above example can be written just as:

wizard = MaleCharacter('a wizard')
wizard.def_name = 'the wizard'

26 Chapter 6. Items

CHAPTER 7

Customisations

Of course, your game will have a unique story, but you can also change adventurelib’s behaviour to suit your game.

Below we will discuss some of the possible customisations and why you might want to use them in a game.

7.1 Input Prompt

Some games display status information in the prompt, such as health. For example:

10HP > attack grue
You flail wildly at the grue, but it neatly side-steps you and
kicks you in the ribs, for 1HP damage.

9HP >

‘HP’ is an abbreviation for ‘health points’ that comes from classic computer games. But you could use a Unicode
heart symbol for this!

Alternatively, you might want to display some status at intervals in the game, unrelated to the actions a player has
taken, such as the footsteps in this example:

> north
You enter a long, rocky passage dimly lit with flickering torches.
The corridor curves to the east.

You hear footsteps to the east.

> east
There's a small nook here. Sitting on a plinth is a crude idol of
a beat with horns.

You hear footsteps to the north.
>

27

adventurelib Documentation, Release 1.1

To customise the prompt, write a function that returns what the prompt string should be. Usually it should end with a
space. Then assign this function as adventurelib.prompt like this:

import adventurelib # Put this at the top of the file

def prompt():
return '{hp}HP > '.format(hp=player_hp)

adventurelib.prompt = prompt

7.2 Disabling the help command

In some games, forcing the player to work out what to type is half the fun.

To make this kind of game work, it’s important to respond to things that the player types with custom responses, so be
prepared to write a lot of @when functions that respond to many varieties of input.

However, the built-in help/? commands would spoil this kind of game by giving all the answers.

You can disable the help by setting help=False when calling start():

start(help=False)

7.3 Customising the “I don’t understand” message

When the player types a command that doesn’t match any existing @when function, adventurelib responds with a
basic “I don’t understand” message:

> jump up and down
I don't understand 'jump up and down'.

This could get very boring if users see it a lot!

To customise this, write a function and assign it as adventurelib.no_command_matches. This function
should accept the input the player typed as its argument, and print any responses:

import adventurelib # Put this at the top of the file

def no_command_matches(command):
print(random.choice([

'Huh?',
'Sorry?',
'I beg your pardon?'

]))

adventurelib.no_command_matches = no_command_matches

28 Chapter 7. Customisations

CHAPTER 8

Release History

8.1 1.2 - 2018-02-13

• New: Commands can be configured to be active only in certain contexts.

• Fix: say() function does not dedent before wrapping text.

8.2 1.1 - 2016-11-20

• New: say() function that eliminates formatting problems in printing multi-line prose.

• New: get_random() and take_random() functions to allow randomly selecting items from a Bag.

• Fix: a bug where @when statements match even if extra words are given.

• Fix: Bag find/get methods were not properly case-insensitive.

8.3 1.0 - 2016-10-01

Initial public release.

29

adventurelib Documentation, Release 1.1

30 Chapter 8. Release History

CHAPTER 9

Indices and tables

• genindex

• modindex

• search

31

adventurelib Documentation, Release 1.1

32 Chapter 9. Indices and tables

Index

A
adventurelib.get_context() (built-in function), 15
adventurelib.set_context() (built-in function), 15

B
Bag (built-in class), 24
bag.add() (built-in function), 25
bag.find() (built-in function), 25
bag.get_random() (built-in function), 25
bag.take() (built-in function), 25
bag.take_random() (built-in function), 25

R
room.exit() (built-in function), 21
room.exits() (built-in function), 21

33

	Overview
	For teachers
	Non-English speakers

	Installing Adventurelib
	With pip
	Single file

	Introduction
	Starting a project
	Adding a command
	Using long text
	Be creative

	Binding commands
	@when decorator
	Capturing values
	Capturing multi-word names
	Additional parameters to commands
	Calling @when functions yourself
	Command Contexts

	Rooms
	Creating a room
	Storing attributes on rooms
	Directions and exits
	Exits
	Moving between rooms
	Adding more directions

	Items
	Defining an item
	Bags of items
	Characters

	Customisations
	Input Prompt
	Disabling the help command
	Customising the “I don’t understand” message

	Release History
	1.2 - 2018-02-13
	1.1 - 2016-11-20
	1.0 - 2016-10-01

	Indices and tables

